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Abstract
We study radial waves in a (2+1)-dimensional noncommutative scalar field
theory, using operatorial methods. The waves propagate along a discrete
radial coordinate and are described by finite series deformations of Bessel-
type functions. At radius much larger than the noncommutativity scale

√
θ ,

one recovers the usual commutative behaviour. At small distances, classical
divergences are smoothed out by noncommutativity.

PACS numbers: 11.10.Nx, 02.70.Bf

Field theories defined over a noncommutative space [1] are interesting, nonlocal but most
probably consistent, deformations of the usual ones. They also arise as a particular low-
energy limit of string theory in a B-field [2, 3]. Noncommutative (NC) field theories display an
intriguing IR/UV mixing (see [4] and later works), demonstrated perturbatively but expected
to hold in general. At the classical level, they possess solitonic solutions [5] which have no
obvious counterpart in local field theory. Other nontrivial solutions of the equations of motion
were also found, cf for instance [6]. However, in spite of considerable progress, NC field
theories are far from being well understood, even classically. One interesting issue, which
might shed further light on these theories, is the description of oscillation and propagation
processes on fuzzy spaces. An example will be discussed here.

The aim of this paper is to describe radial waves in a (2 + 1)-dimensional free scalar field
theory with NC spatial coordinates (theories with NC time were claimed to be non-unitary [7]).
In contrast to plane waves, radial waves are affected by the presence of noncommutativity.
They propagate on a discrete space, provided by the eigenvalues of the radius square operator.
Their amplitude solves a discrete wave equation and is given by a finite series, reminiscent
of Bessel-type functions. In the large-radius limit (analogous to the ‘large quantum number
limit’ in quantum mechanics) the number of terms of the series grows indefinitely. Then, NC
radial waves behave like the usual commutative ones, being described by the asymptotics of
cylindrical functions. At small radius, the solutions of the wave equation are nonsingular, as
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they are everywhere, even in the presence of sources. Thus NC field theories may offer a
solution to the old problem of classical divergences, although they do not seem to qualify at
the quantum level.

We will use operatorial methods, which are quite straightforward in the present context.
The Weyl–Moyal approach would require an unambiguous way to switch between Cartesian
and polar NC coordinates.

The set-up

Let us start with the following action, written in operatorial form,

S =
∫

dt TrH

(
1

2
(�̇2 +

1

2
[Xi,�]2

)
, i = 1, 2. (1)

The scalar field � is a time-dependent operator acting on the Hilbert space H on which the
algebra

[x1, x2] = iθ (2)

is represented. There is no potential term, V (�) = 0, since we study free waves. Xi is given
by Xi = pi + Ai , where pi = θ−1εij x

j . In the following the gauge field Ai is taken to be
zero; consequently we dropped further parts of the action which depend on it. The equations
of motion for the field � are

�̈ + [Xi, [Xi,�]] = �̈ +
1

θ2
[xi, [xi,�]] = 0. (3)

In Cartesian coordinates, the solution of (3) is straightforward,

� ∼ ei(k1x1+k2x2)−iωt , k2
1 + k2

2 = ω2, (4)

and describes plane waves, which are formally identical to the commutative ones. (However
(4) has in fact bilocal character, see, e.g., [8].)

The novelty appears when one considers polar coordinates. If one chooses the oscillator
basis {|n〉} given by

N |n〉 = n|n〉, N = āa, a = 1√
2θ

(x1 + ix2), (5)

the equations of motion become

�̈ +
2

θ
[a, [ā, �]] = 0. (6)

N = 1
2

( x2
1 +x2

2
θ

− 1
)

is basically the radius square operator in units of θ . Thus, radial symmetry
amounts to the assumption � = �(N). Then � is diagonal in the |n〉 basis, and its components
are time-dependent c-numbers, 〈n|�(t)|n〉 ≡ �n(t). They satisfy the equation

�̈n − 2

θ
(n�2�n−1 + ��n) = 0, n = 0, 1, 2, . . . (7)

in which the discrete derivative operator � is defined by

�(�n) = �n+1 − �n. (8)

(Alternatively, one could have diagonalized � in the |n〉 basis, without assuming radial
symmetry. This can be done only once however, thus only one particular solution of (6) would
be diagonal. The other would be bilocal, i.e. of the form 〈n′|�(t)|n〉, with n′ �= n.)

If one assumes the time dependence of �n to be of the form eiωt , one gets the difference
equation

n�2�n−1 + ��n + λ�n = 0, n = 0, 1, 2, . . . (9)

where λ = θω2/2 for a massless scalar field, 2λ/θ = ω2 − m2 for a massive field and
2λ/θ = ω2 + m2 for a tachyon.
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Solution of the equation of motion

Equation (9) describes travelling or stationary waves on a semi-infinite discrete space, namely
the points n = 0, 1, 2, . . .. We will find its two independent linear solutions in the form of
(eventually finite) power series. To do so, note that the standard power nk = n · n · . . . · n does
not behave simply under the action of �. To adapt the usual logic of power series solutions
to the above discrete equation, we define a different type of ‘power of n’ (n is still a positive
integer):

n(k) ≡ n(n − 1)(n − 2) . . . (n − k + 1) = n!

(n − k)!
. (10)

It has a quite useful property that �n(k) = kn(k−1). The definition (10) can be extended to
arbitrary real powers. Having in mind the Gamma function representation of the factorial,
n! = �(n) = ∫ ∞

0 dt e−t tn [for simplicity in notation we write �(n) instead of the usual
�(n + 1)], we define for any real k

n(k) ≡ �(n)

�(n − k)
. (11)

We now search for a solution �(n, σ ) of the form

�(n, σ ) =
∞∑

k=0

ak(σ )n(k+σ), (12)

with σ an arbitrary parameter, to be fixed by the equation. Substituting (12) into (9), one
obtains a recurrence relation for the coefficients ak(σ ),

ak(σ ) = (−λ)

(k + σ)2
ak−1(σ ) = (−λ)k

(k + σ)2(k − 1 + σ)2 · · · (1 + σ)2
a0 (13)

and a quadratic condition for σ ,

σ 2 = 0. (14)

Thus a first solution of our equation is

�1(n) = a0

n∑
k=0

(−λ)k

(k!)2
n(k). (15)

It is given by a finite sum, since n(p) = 0 for n > p, n, p are positive integers. It is understood
that, if one calculates a discrete derivative of (i.e. apply � to) the above solution, one should
put σ = 0 only after operating with �. a0 is a dimensionful constant, which will be dropped
from now on; it can be reinstated at any moment.

Since equation (14) has two equal roots, the above procedure provides only one solution
of (9). Adapting again the methods used for continuous variables (see, for instance, [9]) to the
discrete case, we search a second linearly-independent solution of (9) of the form

�2(n) =
[
∂�(n, σ )

∂σ

]
σ=0

. (16)

In the above equation, �(n, σ ) has the form (12), with ak(σ ) given by (13). In order to actually
evaluate �2(n), we need to take the derivatives with respect to σ of ak(σ ) and of n(k+σ), at
σ = 0. It is easy to show, using (13), that

d

dσ
ak(σ )

∣∣∣∣
σ=0

= −2ak(0)Hk, (17)
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where Hk is (up to a constant) a discrete version of the logarithmic function,

Hk = 1 +
1

2
+

1

3
+ . . . +

1

k
, (18)

with H0 = 0 however. To find d
dσ

n(k+σ), we use the extended definition (11), n(k+σ) = �(n)

�(n−k−σ)

and d
dσ

�(σ ) = ∫ ∞
0 dt e−t tσ log t . This leads to[
dn(k+σ)

dσ

]
σ=0

= n(k)

(n − k)!

∫ ∞

0
dt e−t tn−k log t ≡ n(k)

(n − k)!
In−k. (19)

By successive integration by parts, one obtains In−k

(n−k)! = Hn−k + I0. I0 can be dropped, since
it leads to a term proportional to the already known �1(n). In the end one obtains

�2(n) =
n∑

k=0

(−λ)k

(k!)2
n(k)(Hn−k − 2Hk). (20)

By direct calculation one straightforwardly shows that �2 obeys equation (9), in the same
fashion in which �1 does. The last thing to be shown is the linear independence of the two
solutions, which amounts [10] to proving that

W(n) ≡ �1(n + 1)�2(n) − �1(n)�2(n + 1) �= 0, ∀ n � 0. (21)

Equation (21) is proved by direct calculation, for instance by restricting to the (eventually
nonzero) coefficient of the highest power of λ appearing in W(n). The general solution of (9)
is thus a linear combination of �1(n) and �2(n),

�(n) = c1�1(n) + c2�2(n), (22)

with the coefficients c1,2 fixed by some physical boundary conditions.

Large distances: commutative limit

We now consider the n → ∞ limit in order to see how the precedent solutions behave at
distances r � √

θ from the n = 0 point. (This can also be seen as a small θ limit.) Using
λ = θω2/2 and n = r2

2θ
→ ∞,�1(n) becomes, as a function of r, the zero-order Bessel

function of first type:

�1(n)
n→∞→ f1(r) =

∞∑
k=0

(−1)k(ωr)2k

(k!)222k
= J0(ωr)

r→∞∼
√

2

πωr
cos(ωr − π/4). (23)

We see that f1(r) is independent of θ . This is not the case for the function of r one would
obtain at finite n, which diverges as θ → 0. We will encounter only Bessel functions of zero
order in what follows, since the angular dependence of � is lost, due to (2). We stress that the
absence of radial symmetry would not introduce angular dependence in the solutions of the
equations of motion. It would lead to nonzero (bilocal) solutions of the type 〈n′|�|n〉, n′ �= n.

Similarly, �2 becomes

�2(n) → f2(r) =
∞∑

k=0

(−1)k(ωr)2k

(k!)222k
[2 ln(ωr) − 2Hk + γ − ln(2θω2)]. (24)

γ is the Euler–Mascheroni constant, γ = limk=∞(Hk − lnk) � 0.5772. Thus f2(r)

still depends on θ , via a logarithmic term, which renders the θ → 0 limit singular.
Using the series expansion of the Bessel function of second kind (Neumann function) [9],
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Y0(ωr)
r→∞∼

√
2

πωr
sin(ωr − π/4),

Y0(ωr) = 2

π

( ∞∑
k=0

(−1)k+1(ωr)2k

(k!)222k
Hk + (γ + ln(ωr/2))J0(ωr)

)
, (25)

one sees that f2(r) is a linear combination of Bessel functions of first and second kinds:
f2(r)/π = Y0(ωr) + (γ + ln(2θω2))J0(ωr).

Hence, the n → ∞ limits of the solutions �1(n) and �2(n) obey the Bessel equation.
This is in agreement with the n = r2

2θ
→ ∞ limit of the difference operator entering

equation (9),

2

θ
(n�2�n−1 + ��n)

n→∞→ 2

θ

(
n

d2

dn2
+

d

dn

)
�(n)

n= r2

2θ=
(

d2

dr2
+

1

r

d

dr

)
f (r). (26)

Thus, at r � √
θ , NC radial waves behave like ordinary, commutative ones. This allows us

to find, via a ‘correspondence principle’, which combinations of �1(n) and �2(n) correspond
to stationary, respectively travelling NC waves. In the commutative case, standing waves
are described by the J0(r) function, whereas radially expanding ones by the first Hankel
function H

(1)
0 (r) = J0(r) + iY0(r). Hence, the linear combination of �1(n) and �2(n) which

at n → ∞ tends to J0(ωr) will describe standing noncommutative waves. This is obviously
�1(n), which consequently solves finite-area-boundary-value problems with radial symmetry,
describing standing oscillations. On the other hand, the function which tends to H0(ωr) as
r → ∞, namely

�3(n) = �1(n) +
i

π
(�2(n) + [γ + ln(θω2/2)]�1(n)), (27)

represents a radial NC wave propagating outwards, towards n = ∞. Any solution �(n) of (9)
can be written as a linear superposition of �1(n) and either �2(n) or �3(n), with coefficients
determined by the boundary conditions one wishes to impose. It is understood that all the
above solutions are multiplied by a dimensionful, otherwise arbitrary, constant; the same will
apply for sources.

Small distance: no classical divergences

It is worth noting that, in sharp contrast to the commutative case, in which Hankel and
Neumann functions are singular at the origin, the functions �2,3 are nowhere singular (except
when θ = 0). This suggests that, although not finite in quantum perturbation theory,
fields defined over noncommutative spaces may not display classical divergences. This
happens simply because the sources are not localized (also, one has no access to the origin:
r/

√
θ = √

2n + 1 � 1). In order to rigorously support such a claim, one has to include sources
in the calculation, by solving the inhomogeneous version of equation (9),

(n + 1)�(n + 1) − (2n + 1 − λ)�(n) + n�(n − 1) = j (n). (28)

We present below a simple way to do this, and demonstrate the non-divergent character of the
solutions. Consider first a nonzero source j (n0) located at the point n0. The general solution
of (28) is then the sum of the already found homogeneous solution (22) and of a particular
solution �p, to be found from (28) when j (n) = j (n0)δn,n0 . To find �p we adapt the method
of variation of constants to the discrete case [10], and search for

�p(n) = c1(n)�1(n) + c2(n)�2(n). (29)

Assuming that c1,2(n) is constant except for a jump at the source location n0,

ci(n + 1) − ci(n) = f1(n)δn0,n, i = 1, 2, (30)
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and using the fact that �1,2(n) solve the homogeneous equation, we obtain

f1(n) = �2(n)

(n + 1)W(n)
, f2(n) = − �1(n)

(n + 1)W(n)
, ∀ n � 0. (31)

W(n) is the discrete Wronskian defined in equation (21), which is nonzero due to the linear
independence of �1 and �2. Although in the physically most interesting case n0 = 0 the
difference equation (28) becomes first order, the above method works the same due to the
simple Ansatz (30).

The solution for an arbitrary distribution of charges j (n),∀ n, is now obtained by linear
superposition of the above type of solutions. It does not display singularities.

Let us conclude with a summary of what we have shown:

• On the NC plane defined by [x1, x2] = iθ , radial waves propagate on a discrete space,
given by the eigenvalues r = √

2n + 1, n = 0, 1, 2, . . . of the radius square operator. One
has no access to the origin (r = 0), as one would expect. The amplitude of the waves is
given by a finite series, whose number of terms depends on the location at which the field
amplitude is calculated: at radius r = √

2n + 1
√

θ , one has n + 1 terms in the series.
• In the large radius limit, r � √

θ or n → ∞, the amplitudes become Bessel-type
functions, consequently the waves behave like commutative ones.

• At small radius, if θ �= 0, there are no signs of singularities appearing. This drastic
improvement in the behaviour of classical noncommutative theories deserves to be further
explored.
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